
1. INTRODUCTION AND SUMMARY OF RESULTS.

This memo addresses the temperature gradient sensitivity of
the FAME basic angle.  I adopt a simple analytical model and
assume that the so-called “compound mirror assembly” (CMA)
is formed from a contiguous block of glass,1 or perhaps two
bonded glass slabs (Figure 1).  I consider for analytical sim-
plicity two cases: “longitudinal” gradients, where the tempera-
ture gradient is in the direction from the CMA to the primary
(parallel to the primary mirror axis of symmetry), and “trans-
verse” gradients, which are perpendicular to the longitudinal
gradients.  Both cases assume, as a worst-case scenario, that
the gradient direction lies in the plane of the optical bench.  

For convenience, I summarize here the calculations that fol-
low in Sections 2 and 3.  I find that the change in basic angle ψ
due to the imposition of a gradient β is

dy = −2a
cos2x cæ + O(cæ

2)

for the longitudinal case and 

dy = 2
h + a tan x

cos2x cΩ + O(cΩ
2)

for the transverse case.  Here, , where α is the CTE ofc h a $ b
the material, χ is the angle of the CMA mirrors with respect to
the primary mirror symmetry axis, h is the distance along the
symmetry axis from the CMA support(s) to the CMA mirrors,
and 2a is the width of the CMA block (same as the primary
mirror width, currently 60 cm).  (cf. Figures 1, 3, and 6.)
These equations impose the temperature gradient constraints

bæ [
cos2x
2a a t

and

bΩ [
cos2x

2a(h + a tan x) t

where τ is the allowed tolerance on δψ.  For h = 0, χ = 45 deg,
τ = 25 µas, a = 30 cm, and α = we have 2 $ 10−8 K−1,

and .  Changes in the tempera-bæ [ 5.1 mK/m bΩ [ 5.1 mK/m
ture gradients within the CMA of this order or larger on times-
cales of the order of the spacecraft spin period or less will re-
quire direct means of either controlling or measuring the basic
angle fluctuations.  (Static gradients2 are of little or no concern
in this respect, since the basic angle is a solution parameter in
the data reduction process.)  Figure 2 is a contour plot of the
temperature gradient tolerance in mK/m as a function of δψ in
µas and the CTE in units of 10-8 K-1.  The CTE of the ultra-low
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ABSTRACT
If the compound mirror assembly (CMA) in FAME were to be fabricated of a single block of Zerodur (instead of

silicon carbide with glued-on Zerodur wedges as currently proposed), then, assuming the thermal environment indi-
cated in the Step 1 proposal,  changes in the basic angle due to temperature gradient fluctuations during the course of
one spacecraft spin period are confined to ~35 µas.  This gives rise to the interesting possibility that the proposed la-
ser metrology system, whose sole functional purpose is to measure short-term changes in the basic angle, may not be
needed if further, possibly inexpensive, attention is given to the thermal environment of the CMA.  A tolerance of 25
µas on changes in the basic angle can be met passively if short-term gradient changes are on the order ~5 mK/m or
less.  

Additionally, there is a potential problem that is independent of the metrology question: warping of the CMA mir-
rors alone due to static gradients (as illustrated in the Step 1 proposal) will introduce wavefront errors of order ~18
nm (~λ/30at λ = 550 nm).  Similar warping of the primary mirror will also occur.
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FIG. 1. — Diagram of FAME compound mirror assembly.
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2 I.e.,  gradients that do not change on timescales smaller than the spacecraft spin period.

1 Current design calls for the CMA to consist of silicon carbide with thin Zerodur mirrors attached with glue.  However, the CTE of SiC is ~200 times that of Zero-
dur.



expansion glass Zerodur is at most 5x10-8 K-1 in the tempera-
ture range 0-50 C.  For smaller individual pieces (less than
~600 lb.) it is not unreasonable to expect values that are better
than this.  I use 2x10-8 K-1 in this memo for illustrative pur-
poses.  For comparison, the CTE of silicon carbide is 4.3x10-6

K-1.

FIG. 2. — Contours of temperature gradient tolerance in mK/m vs. CTE
and change in the basic angle.
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Initial thermal work performed at JPL for the FAME project
indicates that the thermal environment may in fact be stable to
better than ~7 mK changes over one spin period.3  If this is the
case, and if further analysis supports the results found here,
then perhaps relatively inexpensive further attention to the
thermal environment of the CMA in particular could replace
the more costly, complex, and untested (in space) laser metrol-
ogy system currently proposed.  

Additionally, it should be pointed out that, since the CMA
lies in collimated light beams, the additional longitudinal shifts
from non-ideal placement of the CMA attachment points to the
optical bench have no significant effect for longitudinal gradi-
ents.  However, for transverse gradients the deformation of the
glass between the supports and the mirrors contributes to the
rotation of each mirror in opposite directions.  Therefore, it is
important that h be as close as possible to zero (Figures 3 and
6).

Finally, there is a potential problem concerning beam diver-
gence due to curling of the mirrors from static gradients.4  
Changes in the temperature gradients are likely to be too small
to have a noticeable effect.  Wavefront errors on the order of
18 picometers would result from gradient changes of 5 mK/m.
However, static thermal gradients, according to a JPL study,5

are likely to be ~5 K/m.  This would produce a noticeable
warpage of the mirrors, with associated wavefront error of or-
der ~30 nm, or ~λ/18 at λ = 550 nm.

2. LONGITUDINAL GRADIENT CASE.

2.1. Derivation of the Surface Perturbation.

Consider a cylindrical coordinate system  embed-(z, q, h)º

ded in a homogeneous medium whose coefficient of thermal
expansion is α °K-1.  For a linear temperature gradient β =
dT/dz along the z coordinate axis (Figure 3), the perturbation
of the position of a point in the medium is given by

(1)u = a b

1
2 (z2 − q2 )

z q
0

(R.D. Reasenberg, private communication).  In the uz term, 
 arises from linear expansion of the material due to the gra-1

2 z2

dient, while the  component is due to stresses within the− 1
2 q2

material set up by the gradient.  The latter term is the source of
the familiar curling effect of an initially flat disk.  The 

 term is just the linear expansion of the material, atuq = a b z q
a height z, in the ρ direction, due to the cumulative effects of a
gradient in the z direction.  Thus, for a plane inclined to the di-
rection of the gradient by an angle χ, the perturbed position on
the initially planar surface as a function of the unperturbed co-
ordinates is

(2)r ∏ =
z ∏

q ∏

h ∏

= r + u =
s + 1

2 ab(s2 − q2 )

q(1 + a b s)

h

where , , and  isx = q cos h y = q sin h s = h + q cos h tan x
the thickness of the material from the CMA support(s) along
the gradient (Figure 3).  In the coordinate system shown in
Figure 3, if the attachment points of the CMA to the optical
block are located at z=0, then h=0.  More generally, for attach-
ment at a level z = z0, then h = -z0.

FIG. 3. — One of the CMA wedges, illustrating the coordinate system for
longitudinal gradients.
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Equation (2) contains a mix of perturbed and unperturbed
coordinates and is therefore not useful in its current form.  We
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5 Results are shown in the Step 1 proposal (see Figure 2.2-8 on page 19).

4 The effects of gravity unloading and non-uniform CTE should also be looked at in this respect.

3 The ~7 mK/m fluctuation shown in the Step 1 proposal is actually a worst-case scenario which was driven by Earthlight at perigee (J. McGuire, private commu-
nication).



wish to express the perturbed surface in terms of the perturbed
coordinates.  From the ρ' component of (2), we have

(3)q ∏ = q [1 + a b (h + q cos h tan x)]

Solving for ρ as a function of ρ', we find

(4)q =
(1 + c h)2 + 4c q ∏ cos h tan x − (1 + c h)

2c cos h tan x

where .  The coefficient of thermal expansion is ac h a $ b
small quantity, so we can expand on γ:

(5)q = q ∏ − (h + q ∏ cos h tan x)q ∏c + O(c2 )

Use (5) for ρ in the z' component of (2), expanding on γ, to get

(6)

s ∏ = s + 1
2 (s2 − q2 )c

= (h + q ∏ cos h tan x)

−[(1 + cos2h tan2x)q ∏ 2 − h2 ] c + O(c2 )

Switching back to Cartesian coordinates and dropping the
primes, we have the equation for the perturbed glass thickness:

(7)s = h + x tan x + Ds

where

(8)Ds = − 1
2

x2

cos2x + y2 − h2 c + O(c2 )

Notice that is the position along the mirror surface,x/ cos x

which is physically of length 2a/ cos x.
A positive gradient along the z axis produces a warp in both

the x and y directions.  Relative to x=0, the far end of the mir-
ror at x=2a sags along x in the shape of a parabola.  Along the
y dimension (x=0), we also have a downward-sagging para-
bolic warp.  

2.2. A Numerical Example.

The warps introduced by a positive temperature gradient of
10 mK/m with  are illustrated in Figures 4 anda = 2 $ 10−8K−1

5.  In Figure 4, the surface perturbation units are nanometers.
The warp across the short dimension (Figure 5, on the next
page) is shown in picometers.  

FIG. 4. — Surface perturbation ∆s (nm) for a 10 mK/m longitudinal tem-
perature gradient.  The warp across the short dimension is two and a half or-
ders of magnitude smaller than the warp across the long dimension.
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2.3. Resulting Change in the CMA Basic Angle. Constraint on
Gradient Magnitude.

The longitudinal excursion of the end of the mirror (x=2a)
relative to the beginning (x=0) is

(9)Ds(c, y = h = 0, x = 2 a) = −2 a2

cos2x c + O(c2 )

This corresponds to an angle

(10)
dy
2 = Ds

2 a = −a
cos2x c + O(c2 )

The change in the basic angle ψ is approximately twice this

amount.  For a tolerance τ such that , the constraint ondy [ t
the longitudinal temperature gradient is then

(11)b [
cos2x
2 a a t + O(t2 )

For the specific case , , ,x = 45 deg t = 25 lrad a = 30 cm

and , we have a = 2 $ 10−8K−1

cos2x
2 a a t = 5.1 mK

m

A more careful way to determine the change in angle is to
average ∆s across the mirror by integration.  The slope of the
tangent along the x direction is

(12)
ØDs(x, y)

Øx = − x
cos2x c + O(c2 )

Hence the change in angle averaged over the 2a by 2b rectan-
gular surface is

(13)tan
dy
2 l

dy
2 = 1

4 a b ¶
0

2a

¶
−b

b

w(x, y) ØDs(x, y)
Øx dy dx

where w(x,y) is a weighting function.  Evaluating the integral
with w(x,y) = 1, we find

(14)
dy
2 = −a

cos2x c + O(c2 )

To first order we recover the approximate result, eq. (10).  The
mirror width 2b only enters in at second order and is therefore
negligible.  Solving for γ and imposing a basic angle tolerance
τ, we have that the temperature gradient constraint is

(15)b [
cos2x
2 a a t + O(t2 )

We again recover the first-order approximation, this time in
eq. (11).  So, for all practical purposes, the first-order approxi-
mation is adequate.

Notice that there is no dependence of δψ on the distance h
(cf. Figures 3 and 6).  This is because, as shown by eq. (8), a
longitudinal gradient in a homogeneous medium causes an
even longitudinal displacement of a planar surface that is per-
pendicular to the gradient direction.  The term involving h is of
the form , which is independent of position perpen-Ds = 1

2 h2c
dicular to the z axis.  Hence it is only the material between z=0
and the mirror surface that contributes to a rotation of the basic
angle.  This would seem to indicate that placement of the sup-
ports between the CMA and the optical bench is unimportant,
at least for longitudinal temperature gradients.  However, such
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is not the case for transverse gradients, as we shall see in Sec-
tion 3.

2.4. Beam Divergence.

Curvature of the mirrors introduced by the temperature gra-
dient will destroy the collimation of the input beam upon re-
flection.  In general, the radius of curvature of a function g(x)
is

(16)R = dh
dS

−1

=
1 +

dg
dx

2
3
2

d2g
dx2

h 2f

where θ is the angle of the tangent line at g(x), Σ is arc length
along the curve, and f is the equivalent focal length.  Using ∆s
from eq. (8) in eq. (16) yields 

(17)fa =
− cos2x

2c and fb = − 1
2c

where fa and fb are the focal lengths along the long (2a) and
short (2b) dimensions.  A CTE of and a tem-a = 2 $ 10−8K−1

perature gradient β = 5 mK/m produce focal lengths of 2.5 and
5.0 gigameters.  At the edge of the beam launched toward the
primary (ρ=30 cm), the wavefront from such a mirror would
lag the wavefront center by about 18 pm.  This represents an
insignificant wavefront error.  However, static thermal gradi-
ents are on the order 5 K/m.  Such gradients along the CMA
would produce a wavefront error of order ~18 nm, or ~λ/30 at
λ = 550 nm.  The optical design goal is to achieve a wavefront
error of 4 nm.  It appears that the likely thermal gradients will
cause a wavefront error many times this large.

3. TRANSVERSE GRADIENT CASE.

3.1. Derivation of the Surface Perturbation.

Recall eq. (1):

(18)u = a b

1
2 (z2 − q2 )

z q
0

For the transverse case, we rotate the coordinates so that the z
axis is again parallel to the temperature gradient (Figure 6).
Eq. (18) then applies without change.  The unperturbed surface
is now expressed in the form

(19)s = h + (2 a − z) tan x = q cos h

so that the mirror plane is described by the constraint equation

(20)z = 2 a +
h − q cos h

tan x

Hence the perturbation at the surface is
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FIG. 5. —  Surface perturbation slices along the long (left) and short (right) dimensions.
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FIG. 6. —  One of the CMA wedges, illustrating the coordinate system for
transverse gradients.
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(21)u = c

1
2 2a +

h − q cos h
tan x

2

− 1
2 q2

2 a q +
h − q cos h

tan x q

0

so that the perturbed surface has the form

(22)

r ∏ = r + u

=
2a + h−q cos h

tan x + 1
2 2a + h−q cos h

tan x

2
− q2 c

q 1 + 2a + h−q cos h
tan x c

h

This time the independent variable of interest is z', so we
would like to express the radius ρ in terms of the perturbed
“height,” z', and use that in the z' component of (22).  From the
ρ' component of (22), we have

(23)q ∏ = q + 2a +
h − q cos h

tan x q c

Solving for ρ, we find

(24)q = q ∏ − 2a +
h − q ∏ cos h

tan x q ∏c + O(c2 )

Hence, dropping the primed notation, the z component in the
perturbed coordinates becomes

(25)

z = 2a +
h − q cos h

tan x

+ 1
2 4a2 − 1 + cos2h

tan2x
q2 +

h + 4a tan x
tan2x

h $ c

+O(c2 )

Invert this to get ρ as a function of z.  We find

(26)

q =
h + (2a − z) tan x

cos h

+
c
2

2h + (4a − z) tan x
cos h z −

(h + (2a − z) tan x)2

cos3h tan x

+O(c2 )

Convert to Cartesian coordinates to obtain

(27)

x = h + (2a − z) tan x
+ 1

2 [(2h + (4a − z) tan x) z

− x2+y2

x2 (h + (2a − z) tan x)2 tan x $ c

+O(c2 )

Solve (27) for x.  We find

(28)x = h + (2a − z) tan x + Ds

where ∆s is given below.  Hence the perturbed surface height
in the case of a transverse temperature gradient is

(29)s = h + (2a − z) tan x + Ds

where

(30)

Ds = z h + 1
2

[z (4a − z) − h2 − y2 ] tan x

− 1
2

(2a − z)(2h + (2a − z) tan x) tan2x $ c

+O(c2 )

3.2. Resulting Change in the CMA Basic Angle. Constraint on
Gradient Magnitude.

Since the two wedge mirrors are tilted in opposite directions
(Figure 1), a positive temperature gradient across one mirror is
a negative gradient across the other, in terms of the effect on
the tilt angle.  Therefore the change to the basic angle will
again be twice the change in tilt of one of the mirrors:

(31)
dy
2 = Ds(z, y)

2a

Now integrate ∆s across the mirror.  The slope of the tangent
along the z direction is

(32)
ØDs(z, y)

Øz =
h + (2a − z) tan x

cos2x c + O(c2 )

The change in angle, averaged over the 2a by 2b plane, is then

(33)
dy
2 = 1

4 a b ¶
0

2a

¶
−b

b

w(z, y) ØDs(z, y)
Øz dy dz

Evaluating (33) with w(z,y) = 1, we have simply

(34)
dy
2 =

h + a tan x
cos2x c + O(c2 )

Solving for γ, we find that the temperature gradient constraint
is

(35)b [
cos2x

2 a (h + a tan x) t + O(t2 )

For the case h = 0, , , , and x = 45 deg t = 25 lrad a = 30 cm

, we have a = 2 $ 10−8K−1

cos2x
2 a a tan x t = 5.1 mK

m

The tolerance on the transverse temperature gradient due to
a constraint on the basic angle deviation is similar to that of
the longitudinal gradient, differing by a factor  and, moretan x
importantly, by a dependence on the distance h.  

3.3. Beam Divergence.

The curvature of the mirrors introduced by a transverse tem-
perature gradient will cause the collimated input beam to di-
verge.  Using eq. (16) to calculate the radius of curvature for
the surface function given by eq. (30), we find 

(36)fa =
− cos2x
2c tan x and fb = − 1

2c tan x

where fa and fb are again the focal lengths along the long and
short dimensions.  Note the similarities to eqs. (17).  A CTE of

and a temperature gradient β = 5 mK/m againa = 2 $ 10−8K−1

produce focal lengths of 2.5 and 5.0 gigameters, since I’m us-
ing χ = 45 deg.  The conclusions of section 2.4 also hold for
the transverse case.
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